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ABSTRACT

Mesenchymal stem cell transplantation is undergoing extensive evaluation as a cellular therapy in
human clinical trials. Because MSCs are easily isolated and amenable to culture expansion in vitro
there is a natural desire to test MSCs in many diverse clinical indications. This is exemplified by the
rapidly expanding literature base that includes many in vivo animal models. More recently, MSC-
derived extracellular vesicles (EVs), which include exosomes and microvesicles (MV), are being
examined for their role in MSC-based cellular therapy. These vesicles are involved in cell-to-cell
communication, cell signaling, and altering cell or tissue metabolism at short or long distances in
the body. The exosomes and MVs can influence tissue responses to injury, infection, and disease.
MSC-derived exosomes have a content that includes cytokines and growth factors, signaling lipids,
mRNAs, and regulatory miRNAs. To the extent that MSC exosomes can be used for cell-free regen-
erative medicine, much will depend on the quality, reproducibility, and potency of their production,
in the same manner that these parameters dictate the development of cell-based MSC therapies.
However, the MSC exosome’s contents are not static, but rather a product of the MSC tissue origin,
its activities and the immediate intercellular neighbors of the MSCs. As such, the exosome content
produced by MSCs appears to be altered when MSCs are cultured with tumor cells or in the in vivo
tumor microenvironment. Therefore, careful attention to detail in producing MSC exosomes may
provide a new therapeutic paradigm for cell-free MSC-based therapies with decreased risk. STEM
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SIGNIFICANCE STATEMENT

Mesenchymal stem/stromal cells (MSCs) are being exploited as an experimental therapy for a
variety of human diseases. Current dogma indicates that MSCs ameliorate disease via secretion
of paracrine acting factors that limit inflammation, reprogram immune cells, and activate
endogenous repair pathways. Recent studies indicate that MSCs also produce extra-cellular
vesicles of varying sizes including exosomes that carry as cargo mRNAs, microRNAs, and pro-
teins, and that horizontal transfer of this cargo induces nonautonomous changes that are thera-
peutic. This manuscript reviews evidence that MSC-derived microvesicles/exosomes function as
paracrine mediators in tissue repair and recapitulate to a large extent the therapeutic effects
of parental MSCs. It also discusses their role in reprogramming endogenous MSCs to generate
a self-reinforcing malignant niche.

INTRODUCTION

Mesenchymal stem/stromal cells (MSCs) are
one of the most commonly employed cell types
under investigation as an experimental cell-
based therapy for treating human diseases.
There are over 600 clinical trials now listed at
www.clinicaltrials.gov utilizing MSCs. Their wide-
spread use stems from their demonstrated
potency in a broad range of experimental animal
models of disease and their excellent safety
profile in humans. Nevertheless, the precise
mechanism(s) of action of MSCs administered to
human patients for a particular disease or

condition remains an area of intensive investiga-
tion. Results indicate (Fig. 1) that MSCs play sev-
eral simultaneous roles: limiting inflammation
through releasing cytokines; aiding healing by
expressing growth factors; altering host immune
responses by secreting immuno-modulatory
proteins; enhancing responses from endoge-
nous repair cells; and serving as mature func-
tional cells in some tissues such as bone. These
mechanism are not mutually exclusive, and as
such it is anticipated that MSCs yield therapeu-
tic effects by an orchestrated response that
is dictated by the unique pathophysiology of a
given disease.
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SHIFTING PARADIGMS

Over the years, our understanding of the nature and function of
MSCs has undergone a number of paradigm shifts. Initially char-
acterized as osteogenic stem/progenitors [1, 2], MSC-based
therapies were anticipated to augment the structure and func-
tion of damaged or diseased tissues via direct cell replacement.
Indeed, in animal studies the MSCs were effective in healing
bone nonunions [3, 4] and in one of their first clinical applica-
tions, MSCs were shown to produce a measurable benefit in
bone strength and ambulation when administered to children
with osteogenesis imperfecta [5]. When MSCs are labeled and
delivered in vivo, they will migrate to sites of tissue injury such
as a brain lesion or cardiac infarct [6–8]. However, it soon
became apparent that relatively few MSCs engrafted at these
sites of injury and studies in rodents and dogs confirmed that
intravenously administered MSCs are caught in the capillaries of
the lung and most MSCs are largely cleared, but some do get
through to the injured target tissue [9–12]. Despite these limita-
tions, MSCs continued to yield short-term therapeutic benefits
in a large number of disease models [13–17]. Although it had
been long-known that MSCs produced abundant growth factors
and cytokines [18–21], many of which modulate the immune
system (summarized in [22, 23]), to reconcile these disparate
findings, the field adopted the revisionist viewpoint that MSCs
affect tissue repair largely via their paracrine factors and stimu-
lation of host cells, and not by cell replacement [24, 25]. This
paradigm shift was spurred by studies demonstrating that cul-
ture medium conditioned by MSCs produced therapeutic effects

similar to delivery of the cells in rodent models of acute myocar-
dial infarction [26] and lung injury [27, 28], and was further bol-
stered by genomics data showing MSCs secrete a plethora of
biologically active proteins [29–31]. In 2007, a study by Timmers
et al. [32] confirmed earlier reports that medium conditioned by
human embryonic stem cell (ESC)-derived MSCs (hESC-MSCs)
significantly reduced infarct size in both pig and mouse models
of myocardial ischemia/reperfusion (MI/R) injury. An important
advance made by this work was inclusion of size fractionation
studies that identified the active component in media within
the 50–200 nm range. Subsequent bio-physical studies charac-
terized the biologically active component as exosomes. Camussi
and colleagues demonstrated that MSC derived microvesicles
prevented kidney injury [33, 34], and Lai et al. [35] reported
that a homogeneous preparation of exosomes with a hydrody-
namic radius of 55-65 nm reduced the infarct size in an ex vivo
mouse Langendorff heart model of myocardial ischemia/
reperfusion injury at a protein dosage equivalent to �10% of
the conditioned medium dosage. Herein, the nature of the in
vitro infarct model also ruled out any contribution from circulat-
ing immune cells or platelets. These studies have fostered an
intense research effort to better understand the nature and
function of MSC-derived exosomes. While MSCs are known to
express growth factors and cytokines, many of these proteins
do not have signal peptides and their packaging along with
mRNAs and miRNAs in membrane-bound vesicles explained, at
least partially, how MSCs exert multiple effects throughout the
body.

Figure 1. MSCs play multiple roles. They can differentiate to multiple lineages and can participate in organized cell replacement thera-
py but engraftment after delivery in vivo remains low. However, the MSCs produce many cytokines and growth factors that influence
other cells producing decreased inflammation, enhanced progenitor cell proliferation, improved tissue repair and decreased infection.
MSCs have also been shown to donate mitochondria via tunneling nanotubes to damaged cells. More recently, the MSC production
and release of membrane bound packets—microvesicles (>200 mm) and exosomes (�50–200 mm)—that encapsulate cytokines/growth
factors/RNAs/miRNAs in diverse combinations. These vesicles are being tested in experimental systems previously tested with the cells
themselves. Remarkably, the vesicle preparations have shown results very similar to MSC transplantation in many cases, while avoiding
many risks associated with cell transplantation. However, many important tasks remain before MSC-derived vesicle therapy can be used
clinically including standardized production, vesicle characterization, improving isolation and yield optimization, reproducibility, an assay
for potency, determining dosage for particular clinical indication and standardized production—all similar to parameters needed for MSC
cell therapy. Abbreviation: MSCs, Mesenchymal stem/stromal cells.
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EXOSOMES AND MICROVESICLES AS PARACRINE MEDIATORS IN

TISSUE REPAIR

Most cells produce extracellular vesicles as a consequence of
intracellular vesicle sorting including both microvesicles of
>200 nm and exosomes of 50-200 nm diameter. The microve-
sicles are shed from the plasma membrane whereas exosomes
originate from early endosomes and as they mature into late
endosomes/multivesicular bodies, they acquire increasing
numbers of intraluminal vesicles, which are released as
exosomes upon fusion of the endosome with the cell surface
[36, 37]. With respect to MSCs, most laboratories isolate
exosomes/microvesicles from conditioned media via ultracentri-
fugation (See Table 1) although a method based on chromatog-
raphy has also been described [45], and characterize these
fractions based on their membrane protein content and/or car-
go. For example, the tetraspanins, CD63, and CD81 are common
markers enriched in exosomes [69]. While the physiological
significance and evolutionary consequence for producing
extracellular vesicles and a detailed description of their physical
nature is beyond the scope of this review, these topics have
been covered elsewhere [70–72].

The majority of the published MSC exosome literature reca-
pitulates in large part the nature and scope of that previously
devoted to the study of MSC action in animal models of disease.
For example, various groups have confirmed that MSC-derived
exosomes exhibit cardio and renal-protective activity [32,
42–44], are efficacious in animal models of myocardial infarction
[39–41], stroke [46], peri-natal hypoxic-ischemic brain injury
[47], and hind-limb ischemia [62]. The MSC-derived exosomes
also ameliorated carbon tetrachloride-induced liver fibrosis [50,
51], and conferred cyto-protective effects in models of necrotiz-
ing enterocolitis [58]. In lung studies, the mouse MSC exosomes
were effective in improving pulmonary hypertension [52, 53],
silicosis [54], and human MSC-exosomes improved endotoxin-
induced pulmonary edema [55, 57], and cleared alveolar fluid
from human lungs ex vivo [56]. Other studies have shown that
MSC-derived exosomes also promoted re-epithelialization of
cutaneous wounds by inducing epithelial cell proliferation [60]
and angiogenesis [73, 74], activated collagen and elastin secre-
tion by fibroblasts [61], and prevented myo-fibroblast formation
thereby reducing scaring [59]. The MSC-derived exosomes
also promoted muscle regeneration [63], protected against
experimental colitis [75], and exhibited potent neuro-protective

Table 1. Translational studies employing MSC-derived microvesicles and exosomes

Target tissue/Model

Species-exosome

(Origin into Target) MSC-derived agent Method Dose aReferences

Heart/infarct Human into Pig Cond. Med. 25 3 conc 10 mg in 5 ml 32Timmers et al. (2007)
Heart/IR Human into Mouse Exosomes 55-65 nm HPLC 0.4 mg 35Lai et al. (2010)
Heart/infarct Rat into Rat Exosomes w/GATA4 ExoQuick (4 3 106 MSC) 38Yu et al. (2015)
Heart/IR Human into Mouse Exosomes, ATP HPLC 0.1-0.4 mg 39Arslan et al. (2013)
Heart/infarct Human into Rat Extracellular Vesicles 100K 3 g 80 mg 40Bian et al. (2014)
Heart/infarct Rat into Rat Exosomes ExoQuick 80 mg 41Teng et al. (2015)
Kidney/injury Human into Mouse Microvesicles 100K 3 g 100 mg 34Bruno et al. (2012)
Kidney/chronic Human into Rat Cond. Medium 25x 0.5mg/ml 42Van Koppen

et al. (2012)
Kidney/gentamycin Rat into Rat Exosomes 100K 3 g 100 mg 43Reis et al. (2012)
Kidney/cisplatin Human into Rat Exosomes 100K 3 g 250 mg 44Zhou et al. (2013)
Brain/TBI Human into Mouse Exosomes An Chrom 30 mg 45Kim et al. (2016)
Brain/stroke Rat into Rat Exosomes 100K 3 g 100 mg 46Xin et al. (2013)
Brain/ischemia Human into Ovine Extracellular Vesicles PEG (2 3 2 3 107 MSC) 47Ophelders et al. (2016)
Brain/TBI Rat into Rat Exosomes ExoQuick 100 mg 48Zhang Y et al. (2015)
Brain/stroke Human into Mouse Exosomes 110K 3 g (2 3 106 MSCs) 49Doeppner et al. (2015)
Liver/fibrosis Human into Rat Exosomes 100K 3 g 250 mg 50Li et al. (2013)
Liver/drug injury Human into Mouse Exosomes 100K 3 g 0.4 mg 51Tan et al. (2014)
Lung/hypoxia Mouse into Mouse Cond Med, Exsomes PEG-S200 0.1–10 mg 52Lee et al. (2012)
Lung/drug Mouse into Mouse Exosomes 100K 3 g 25 mg 53Aliotta et al. (2016)
Lung/silicosis Human into Mouse Microvesicles ExoQuick 10 mg 54Choi et al. (2014)

55Zhu et al. (2014)Hypertension Human into Mouse Microvesicles 100K 3 g (3x106 MSCs)
Lung/fluid filled Human into Human Microvesicles 100K 3 g 160 mg 56Gennai et al. (2015)
Lung/E.coli endotoxin Human into Mouse Microvesicles 100K 3 g (9 3 106 MSCs) 57Monsel et al. (2015)
Intestine/enterocolitis Human into Rat Exosomes PureExo 50ml IP 58Rager et al. (2016)
Intestine/enterocolitis Rat into Rat Microvesicles 100K 3 g 50-200 mg 59Yang et al. (2015)
Skin/wound Human into Rat Exosomes, Wnt4 100K 3 g 200 mg 60Zhang B et al. (2015)
Skin/wound Human into Rat Exosomes 100K 3 g 160 mg 61Zhang J et al. (2015)
Skin/wound Human into Mouse Exosomes, miRNA 120K 3 g 100 mg 59Fang et al. (2016)
Limb ischemia Human into Mouse Exosomes 100K 3 g 200 mg 62Hu et al. (2015)
Sk. Musc/cardiotoxin Human into Mouse Exosomes, miR-494 110K 3 g 50 ul 63Nakamura et al. (2015)
Sk. Muscle/ALS Mouse into Mouse Exosomes, SOD1 PureExo 0.2 mg/ml 64Bonafede et al. (2016)
Cancer/glioma Rat into Rat Exosomes, miR-146b ExoQuick 50 mg 65Katakowski et al. (2013)
Cancer/breast Human into mouse Exosome miRNA 100K 3 g 1 mg/4d 66Ono et al. (2014)
Cancer/Myeloma Human into mouse Exosomes ExoQuick 67Roccaro et al. (2013)
Sepsis/poly-fecal Mouse into Mouse Exosomes, miR-223 36K 3 g 2 mg/gBW 68Wang et al. (2015)

aSuperscript numbers refer to citation numbers within the text. ExoQuick is from SystemBio Inc Palo Alto CA, PureExo is from 101Bio Inc.,
PaloAlto CA. Eighty micrograms is about the amount of exosomes released from 2 million MSCs in 48 hours.
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activities in neurons [64, 76] and in models of traumatic brain
injury [45, 48]. MSC-derived exosomes are also immunologically
active based on evidence that they suppressed proliferation
and IFN-g secretion by T cells stimulated with anti-CD3 and
anti-CD28 antibodies [77], and also enhanced the survival of
allogenic skin grafts in mice by enhancing T cell polarization to a
regulatory phenotype [78]. A growing number of studies suggest
that MSC-derived exosomes mimic the ability of MSCs to influ-
ence the activity of immune effector cells including B, T, NK, den-
dritic cells, and macrophages although not all studies show
positive effects [reviewed in [79]]. Collectively, these studies
readily demonstrate that MSC-derived exosomes recapitulate to
a large extent the immensely broad therapeutic effects previ-
ously attributed to MSCs.

However, while much effort has been devoted to demon-
strating that MSCs and MSC-derived exosomes yield similar
therapeutic benefits in various disease models, most studies
fall short of rigorously validating this hypothesis. For example,
various groups have compared the potency of MSCs versus
MSC-derived exosomes, and in some cases MSC conditioned
media, in animal models of myocardial infarction [40], focal
cerebral ischemia [49], gentamicin-induced kidney injury [43],
and silicosis [54]. While most studies report that MSC-derived
exosomes are equally effective as MSCs in sparing tissue and/
or promoting functional recovery from injury, this desired out-
come is compromised by lack of appropriate controls, compa-
rable dosing, evaluation of the different disease endpoints,
variations in frequency and timing of dosage, and absence of
dose-dependent effects, thereby making it difficult to draw
conclusions about comparable efficacy and potency. There is
also the issue of lability and whether freezing/thawing effects
exosome potency.

MODE OF ACTION OF MSC-DERIVED EXOSOMES

MSC-derived exosomes function largely via horizontal transfer
of mRNAs, miRNAs and proteins, which then function by a
variety of mechanisms to alter the activity of target cells. For
example, Tomasoni et al. [80] reported that transfer of IGF-1R

mRNA from MSC-derived exosomes to cisplatin-damaged
proximal tubular epithelial cells sensitized the epithelial cells
to the renal-protective effects of locally produced IGF-1. With
respect to miRNAs, those contained within MSC-derived exo-
somes have been shown to inhibit tumor growth [65, 66],
reduce cardiac fibrosis following myocardial infarction [81],
stimulate axonal growth from cortical neurons [76], promote
neurite remodeling and functional recovery after stroke [82],
and stimulate endothelial cell angiogenesis [83]. Furthermore,
several studies have validated a direct role for exosome-
derived miRNAs in modulating target cell function via use of
loss-of-function approaches [68, 82]. Other studies have
shown that exosomes secreted by bone marrow-derived MSCs
contain cystinosin (CTNS), a cystine efflux channel in the lyso-
somal membrane, and that coculture of fibroblasts and proxi-
mal tubular cells from cystinosis patients with MSC-derived
exosomes resulted in a dose dependent decrease in cellular
cystine levels [84]. Additionally, Katsuda et al. [85] demon-
strated that exosomes produced from adipose-derived MSCs
(ADSCs) contain neprilysin, an enzyme that degrades the amy-
loid beta peptide, and that coculture of N2a cells engineered

to overexpress human Ab with ADSCs significantly reduced
the levels of secreted Ab40 and Ab42 by exosome-mediated
transfer of neprilysin. A separate study by Amarnath et al.
[86] reported that MSC-derived exosomes suppress human-
into-mouse GvHD by inhibiting Th1 cell effector function via
the release of CD73 containing exosomes, which when taken
up by CD39 expressing CD41 Th1 cells resulted in enhanced
adenosine production and increased Th1 cell apoptosis.
Together, these studies indicate that dissecting the therapeutic
effects of MSC-derived exosomes and their mechanism of
action in vivo may be equally as challenging as determining
that for the parent MSCs.

EXOSOMES AND THE MSC NICHE FUNCTION

It is well-established that marrow resident MSCs play a critical
role in retention of HSCs within the bone marrow niche [87],
and alterations in MSC function may contribute to the patho-
physiology of hematological diseases [88]. Consistent with
these findings, an increasing number of studies have shown
that exosomes secreted from leukemic cells reprogram MSCs
to promote the development of a self-reinforcing malignant
niche. For example, Munti�on et al. [89] found that that the
miRNA cargo of exosomes was significantly altered in marrow-
derived MSCs harvested from myelodysplastic syndrome
(MDS) patients when compared to disease-free patients, and
uptake of these exosomes by normal CD341 progenitors
enhanced cell viability and increased CFU-GM production. The
cargo of MSC-derived exosomes from acute myeloid leukemia
(AML) patients was also shown to differ from normal patients
in that it contained elevated levels of miR155 and miR375,
which independently identify AML patients at high risk for
recurrence, and conferred chemo-resistance to AML cells
against cytarabine and the FLT3 inhibitor AC220 [90].
Exosomes recovered from the blood of CML patients carried
as part of their cargo the EGFR ligand amphiregulin (AREG),
and coculture with HS5 stromal cells induced expression of
MMP9 and IL-8 by increasing EGFR signaling, resulting in
increased adhesion of leukemic cells to stromal cells [91].
Similarly, exosomes released by primary chronic lymphocytic
leukemia (CLL) cells reprogramed MSCs to adopt a cancer-
associated fibroblast (CAF) phenotype characterized predomi-
nantly by increased NF-kB signaling and elevated secretion of
cytokines and chemokines [92], which enhanced tumor cell
survival in vitro and tumor growth in vivo. Studies have also
shown that exosome-mediated transfer of tumor associated
miRNAs from multiple myeloma cells to MSCs stimulated the
latter to secrete higher levels of the myeloma survival factors
CXCL1, CCL5, and IL6 [93]. Moreover, MSC-derived exosomes
from multiple myeloma patients were shown to express
higher levels of oncogenic cytokines as compared to those
from normal patients and promote growth of tumor cell lines
in vivo [67].

While the role of exosomes in creating a leukemic niche is
under intensive study, their role within the bone marrow
niche under healthy physiological conditions has only recently
garnered attention. For example, Wen et al. [94] reported
that extra-cellular vesicles (EVs) derived from bone marrow
MSCs were capable of protecting Lin- hematopoietic progeni-
tors from radiation-induced damage both in vitro and in vivo.
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Herein, exposure of Lin- cells to EVs after irradiation led to a
statistically significant (p< .05) increase in their overall
engraftment at 24 and 36 weeks post-transplant, and also
enhanced engraftment when transplanted to secondary recipi-
ents. Other studies have shown that MSC-derived exosomes
stimulate bone regeneration in critical-sized calvarial defects
in ovariectomized rats [95], hyaline cartilage formation and
repair of osteochondral defects in rat femurs after repeated
intra-articular injections [96], and reversed defects in bone
healing due to impaired callus formation in CD92/2 mice
[97]. Last, Phinney et al. [98] recently demonstrated that
human MSCs manage intracellular oxidative stress by target-
ing depolarized mitochondria to the plasma membrane via
arrestin domain-containing protein 1-mediated microvesicles,
that these vesicles are engulfed and reutilized by macro-
phages, and that MSCs simultaneously shed miRNA-containing
exosomes that inhibit macrophage activation by suppressing
Toll-like receptor signaling thereby de-sensitizing macrophages
to the ingested mitochondria.

NOT ALL MSC-DERIVED EXOSOMES ARE CREATED EQUAL

As is the case with MSC-based therapies, studies indicate
that not all MSC-derived exosomes are equivalent. For
example, Katsuda et al. [85] reported that exosomes
isolated form adipose-derived MSCs contain up to fourfold
higher levels of enzymatically active neprilysin, an enzyme
important in degradation of beta-amyloid, as compared to
bone marrow-derived MSCs. Del Fattore et al. [99] further
showed that exosomes from marrow and umbilical cord-
derived MSCs inhibited the growth and induced apoptosis
of U87MG glioblastoma cells in vitro whereas those from
adipose-derived MSCs promoted cell growth but had no
effect on U87MG survival. Lastly, Lopez-Verrilli et al. [100]
showed that exosomes prepared from different tissue-
specific MSCs have measurably different effects on neurite
outgrowth in primary cortical neurons and dorsal root gan-
glia explant cultures.

This diversity of experimental results is fascinating and
complex. While the opportunities for cell-free treatment of
many diseases seems at hand, have we merely replaced one
variable cell therapy product with an equally variable cell
extract from those cells? Moreover, does this mean each labo-
ratory will have its own preferred method, or can we arrive
at a standardized protocol to be able to assay the identity,
predict the exosome contents, potency, and dosing to be
assured of the in vivo effects? The exosome or microvesicle
approach does avoid the transfer of cells and their DNA. How-
ever, the small payload of such vesicles suggests a production
issue, and one that must be standardized by acceptable
methods.

CONCLUSIONS AND FUTURE DIRECTIONS

Once thought to function in cell replacement for damaged
tissue-resident cells, it is now widely established that the
more immediate principle mechanism of action of MSCs in
vivo is paracrine in nature, and that the generation of exo-
somes and microvesicles by MSCs is a critical parameter in
their ability to modify the function of host cells and tissues

(Fig. 1). Various studies indicate that MSC-derived exosomes
exert their effect via horizontal transfer of proteins, mRNAs
and regulatory microRNAs. The ability of diseases and trans-
formed cells to also affect the function of tissue resident
MSCs is of importance, as usurping the MSCs ability to mod-
ify the cancer niche likely plays a critical role in survival and
expansion of cancerous cells both in dispersed and solid
tumors. Despite the rapid progress made in exosome
research to date, a number of important questions remain
with respect to their role in MSC biology. For example, few
studies have explored whether endogenous niche resident
MSCs that play a role in hematopoiesis and skeletal homeo-
stasis secrete exosomes or microvesicles, and the role they
play in niche maintenance under normal physiological condi-
tions. Whether the essence of the MSC can be captured by
its secreted products and used therapeutically is another
critical question to be addressed. This is of particular impor-
tance owing to the fact that the broad therapeutic efficacy
of MSCs is predicated on their ability to rapidly respond to
the injury microenvironment, whereas isolated exosomes
would not be anticipated to do so. We can also expect
that the very low number of endogenous MSCs, and the
constantly diminishing number of isolatable MSCs found in
the aging individual make the assessment of the role of
endogenous MSC exosomes a challenging question. But
these problems of understanding cell to cell communication
via exosomes and microvesicles are some of the most
interesting problems in biology and not only confined to
MSCs or stem cells, and helpful answers may come from the
broader biology community.

Use of MSC-derived exosomes/microvesicles in human
patients has several potential advantages. First, their use
avoids the transfer of cells which may have mutated or dam-
aged DNA. Second, the vesicles are small and circulate readily
whereas MSCs are too large to circulate easily through
capillaries and many MSCs do not get beyond the first pass
capillary bed, usually the lungs (although some clearly get
through). Third, the dose of infused MSCs quickly diminishes
post-transplant, and it may be that the delivery of MSC-
derived vesicles can achieve a higher “dose” that circulates to
a greater extent than the larger cells. The disadvantage of
using MSC-derived vesicles is that they are static and more
cannot be produced in vivo as may be possible when trans-
planting the cell itself. The question then arises as to the
potency of the vesicles and the therapeutic dose. This means
a potency assay must be developed for the vesicles, a task
that still challenges many labs developing MSC cellular thera-
peutics. While it is almost assured MSC-derived exosomes will
advance toward clinical testing, their utility and efficacy will
depend on a number of critical parameters including reducing
to practice reproducible methods to manufacture exosomes/
microvesicles of defined content, developing methods of stor-
age and recovery of these products that maintain vesicle
potency, and evaluating their therapeutic efficacy in well con-
trolled, appropriately powered clinical trials that are rationally
designed based on supporting scientific and translational data.
One may anticipate that by building on knowledge gained
from MSC-based clinical trials the development of exosome/
microvesicle-based therapies may experience more rapid
advancement.
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